Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 27(1): 49-66, Feb. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-230243

RESUMO

Nitrogen and carbon are the two most essential nutrient elements, and their metabolism is tightly coupled in single carbon metabolic microorganisms. However, the nitrogen metabolism and the nitrogen/carbon (N/C) metabolic balance in single-carbon metabolism is poorly studied. In this study, the nitrogen metabolism pattern of the fast growing methanotrophs Methylomonas sp. ZR1 grown in methane and methanol was studied. Effect study of different nitrogen sources on the cell growth of ZR1 indicates that nitrate salts are the best nitrogen source supporting the growth of ZR1 using methane and methanol as carbon source. However, its metabolic intermediate ammonium was found to accumulate with high N/C ratio in the medium and consequently inhibit the growth of ZR1. Studies of carbon and nitrogen metabolic kinetic under different N/C ratio conditions indicate that the accumulation of NH4+ is caused by the imbalanced nitrogen and carbon metabolism in ZR1. Feeding carbon skeleton α-ketoglutaric acid could effectively relieve the inhibition effect of NH4+ on the growth of ZR1, which further confirms this assumption. qPCR analysis of the expression level of the central metabolic key enzyme gene indicates that the nitrogen metabolic intermediate ammonium has strong regulation effect on the central nitrogen and carbon metabolism in ZR1. qPCR-combined genomic analysis confirms that a third ammonium assimilation pathway glycine synthesis system is operated in ZR1 to balance the nitrogen and carbon metabolism. Based on the qPCR result, it was also found that ZR1 employs two strategies to relieve ammonium stress in the presence of ammonium: assimilating excess ammonium or cutting off the nitrogen reduction reactions according to the available C1 substrate. Validating the connections between single-carbon and nitrogen metabolism and studying the accumulation and assimilation mechanism of ammonium will contribute to understand how nitrogen regulates cellular growth in single-carbon metabolic microorganisms.(AU)


Assuntos
Humanos , Methylomonas/metabolismo , Nitrogênio/metabolismo , Carbono/química , Metabolismo/genética , Metanol , Microbiologia , Técnicas Microbiológicas
2.
Int Microbiol ; 27(1): 49-66, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38038804

RESUMO

Nitrogen and carbon are the two most essential nutrient elements, and their metabolism is tightly coupled in single carbon metabolic microorganisms. However, the nitrogen metabolism and the nitrogen/carbon (N/C) metabolic balance in single-carbon metabolism is poorly studied. In this study, the nitrogen metabolism pattern of the fast growing methanotrophs Methylomonas sp. ZR1 grown in methane and methanol was studied. Effect study of different nitrogen sources on the cell growth of ZR1 indicates that nitrate salts are the best nitrogen source supporting the growth of ZR1 using methane and methanol as carbon source. However, its metabolic intermediate ammonium was found to accumulate with high N/C ratio in the medium and consequently inhibit the growth of ZR1. Studies of carbon and nitrogen metabolic kinetic under different N/C ratio conditions indicate that the accumulation of NH4+ is caused by the imbalanced nitrogen and carbon metabolism in ZR1. Feeding carbon skeleton α-ketoglutaric acid could effectively relieve the inhibition effect of NH4+ on the growth of ZR1, which further confirms this assumption. qPCR analysis of the expression level of the central metabolic key enzyme gene indicates that the nitrogen metabolic intermediate ammonium has strong regulation effect on the central nitrogen and carbon metabolism in ZR1. qPCR-combined genomic analysis confirms that a third ammonium assimilation pathway glycine synthesis system is operated in ZR1 to balance the nitrogen and carbon metabolism. Based on the qPCR result, it was also found that ZR1 employs two strategies to relieve ammonium stress in the presence of ammonium: assimilating excess ammonium or cutting off the nitrogen reduction reactions according to the available C1 substrate. Validating the connections between single-carbon and nitrogen metabolism and studying the accumulation and assimilation mechanism of ammonium will contribute to understand how nitrogen regulates cellular growth in single-carbon metabolic microorganisms.


Assuntos
Compostos de Amônio , Methylomonas , Metanol/metabolismo , Methylomonas/genética , Methylomonas/metabolismo , Metano/metabolismo , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
3.
Appl Microbiol Biotechnol ; 107(9): 3099-3111, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933079

RESUMO

Methanotrophs are able to metabolize volatile organic sulfur compounds (VOSCs), excrete organic carbon during CH4 oxidation, and influence microbial community structure and function of the ecosystem. In return, microbial community structure and environmental factors can affect the growth metabolism of methanotrophs. In this study, Methylomonas koyamae and Hyphomicrobium methylovorum were used for model organisms, and methanethiol (MT) was chosen for a typical VOSC to investigate the synergy effects under VOSC stress. The results showed that when Hyphomicrobium methylovorum was co-cultured with Methylomonas koyamae in the medium with CH4 used as the carbon source, the co-culture had better MT tolerance relative to Methylomonas koyamae and oxidized all CH4 within 120 h, even at the initial MT concentration of 2000 mg m-3. The optimal co-culture ratios of Methylomonas koyamae to Hyphomicrobium methylovorum were 4:1-12:1. Although MT could be converted spontaneously to dimethyl disulfide (DMDS), H2S, and CS2 in air, faster losses of MT, DMDS, H2S, and CS2 were observed in each strain mono-culture and the co-culture. Compared with Hyphomicrobium methylovorum, MT was degraded more quickly in the Methylomonas koyamae culture. During the co-culture, the CH4 oxidation process of Methylomonas koyamae could provide carbon and energy sources for the growth of Hyphomicrobium methylovorum, while Hyphomicrobium methylovorum oxidized MT to help Methylomonas koyamae detoxify. These findings are helpful to understand the synergy effects of Methylomonas koyamae and Hyphomicrobium methylovorum under MT stress and enrich the role of methanotrophs in the sulfur biogeochemical cycle. KEY POINTS: • The co-culture of Methylomonas and Hyphomicrobium has better tolerance to CH3SH. • Methylomonas can provide carbon sources for the growth of Hyphomicrobium. • The co-culture of Methylomonas and Hyphomicrobium enhances the removal of CH4 and CH3SH.


Assuntos
Hyphomicrobium , Methylomonas , Methylomonas/metabolismo , Hyphomicrobium/metabolismo , Ecossistema , Carbono/metabolismo , Enxofre/metabolismo , Oxirredução , Metano/metabolismo
4.
Chembiochem ; 23(12): e202200195, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35385600

RESUMO

Methane is a widespread energy source and can serve as an attractive C1 building block for a future bioeconomy. The soluble methane monooxygenase (sMMO) is able to break the strong C-H bond of methane and convert it to methanol. The high structural complexity, multiplex cofactors, and unfamiliar folding or maturation procedures of sMMO have hampered the heterologous production and thus biotechnological applications. Here, we demonstrate the heterologous production of active sMMO from the marine Methylomonas methanica MC09 in Escherichia coli by co-synthesizing the GroES/EL chaperonin. Iron determination, electron paramagnetic resonance spectroscopy, and native gel immunoblots revealed the incorporation of the non-heme diiron centre and homodimer formation of active sMMO. The production of recombinant sMMO will enable the expansion of the possibilities of detailed studies, allowing for a variety of novel biotechnological applications.


Assuntos
Proteínas de Escherichia coli , Methylomonas , Chaperoninas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Metano/metabolismo , Methylomonas/metabolismo , Oxigenases/metabolismo
5.
ACS Synth Biol ; 10(3): 487-494, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33616380

RESUMO

Bioaugmentation is a promising alternative in soil remediation. One challenge of bioaugmentation is that exogenous pollutant-degrading microbes added to soil cannot establish enough biomass to eliminate pollutants. Considering that methanotrophs have a growth advantage in the presence of methane, we hypothesize that genetically engineered methanotrophs could degrade contaminants efficiently in soil with methane. Here, methanotroph Methylomonas sp. LW13, herbicide bensulfuron-methyl (BSM), and two kinds of soil were chosen to confirm this hypothesis. The unmarked gene knock-in method was first developed for strain LW13. Then, BSM hydrolase encoding gene sulE was inserted into the chromosome of strain LW13, conferring it BSM-degrading ability. After inoculation, the cell amount of strain LW13-sulE in soil raised considerably (over 100 fold in 9 days) with methane provision; meanwhile, >90% of BSM in soil was degraded. This study provides a proof of the concept that genetically engineered methanotroph is a potential platform for soil remediation.


Assuntos
Biodegradação Ambiental , Metano/metabolismo , Praguicidas/metabolismo , Poluentes do Solo/metabolismo , Técnicas de Introdução de Genes , Hidrolases/genética , Hidrolases/metabolismo , Metano/química , Methylomonas/genética , Methylomonas/metabolismo , Praguicidas/química , Microbiologia do Solo , Poluentes do Solo/química , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/metabolismo , Zea mays/metabolismo
6.
Carbohydr Polym ; 258: 117733, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33593529

RESUMO

Microbial biotransformation of CH4 gas has been attractive for the production of energy and high-value chemicals. However, insufficient supply of CH4 in a culture medium needs to be overcome for the efficient utilization of CH4. Here, we utilized cellulose nanocrystals coated with a tannic acid-Fe3+ complex (TA-Fe3+CNCs) as a medium component to enhance the gas-liquid mass-transfer performance. TA-Fe3+CNCs were well suspended in water without agglomeration, stabilized gas bubbles without coalescence, and increased the gas solubility by 20 % and the kLa value at a rapid inlet gas flow rate. Remarkably, the cell growth rate of Methylomonas sp. DH-1 as model CH4-utilizing bacteria improved with TA-Fe3+CNC concentration without any cytotoxic or antibacterial properties, resulting in higher metabolite production ability such as methanol, pyruvate, formate, and succinate. These results showed that TA-Fe3+CNCs could be utilized as a significant component in the culture medium applicable as a promising nanofluid for efficient CH4 microbial biotransformation.


Assuntos
Biotransformação , Celulose/química , Metano/química , Nanopartículas/química , Taninos/química , Antibacterianos/química , Reatores Biológicos , Catálise , Meios de Cultura , Fermentação , Gases , Ferro/química , Metanol/química , Methylomonas/metabolismo , Solubilidade , Ácido Succínico/química , Propriedades de Superfície , Viscosidade , Água/química
7.
Commun Biol ; 4(1): 205, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589718

RESUMO

In bacterial biotechnology, instead of producing functional proteins from plasmids, it is often necessary to deliver functional proteins directly into live cells for genetic manipulation or physiological modification. We constructed a library of cell-penetrating peptides (CPPs) capable of delivering protein cargo into bacteria and developed an efficient delivery method for CPP-conjugated proteins. We screened the library for highly efficient CPPs with no significant cytotoxicity in Escherichia coli and developed a model for predicting the penetration efficiency of a query peptide, enabling the design of new and efficient CPPs. As a proof-of-concept, we used the CPPs for plasmid curing in E. coli and marker gene excision in Methylomonas sp. DH-1. In summary, we demonstrated the utility of CPPs in bacterial engineering. The use of CPPs would facilitate bacterial biotechnology such as genetic engineering, synthetic biology, metabolic engineering, and physiology studies.


Assuntos
Biotecnologia , Peptídeos Penetradores de Células/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microbiologia Industrial , Methylomonas/metabolismo , Animais , Células CHO , Peptídeos Penetradores de Células/genética , Cricetulus , Eletroporação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Células HEK293 , Humanos , Methylomonas/genética , Biblioteca de Peptídeos , Plasmídeos/genética , Plasmídeos/metabolismo , Estudo de Prova de Conceito , Transporte Proteico
8.
World J Microbiol Biotechnol ; 37(2): 29, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33452942

RESUMO

Methylomonas sp. ZR1 was an isolated new methanotrophs that could utilize methane and methanol growing fast and synthesizing value added compounds such as lycopene. In this study, the genomic study integrated with the comparative transcriptome analysis were taken to understanding the metabolic characteristic of ZR1 grown on methane and methanol at normal and high temperature regime. Complete Embden-Meyerhof-Parnas pathway (EMP), Entner-Doudoroff pathway (ED), Pentose Phosphate Pathway (PP) and Tricarboxy Acid Cycle (TCA) were found to be operated in ZR1. In addition, the energy saving ppi-dependent EMP enzyme, coupled with the complete and efficient central carbon metabolic network might be responsible for its fast growing nature. Transcript level analysis of the central carbon metabolism indicated that formaldehyde metabolism was a key nod that may be in charge of the carbon conversion efficiency (CCE) divergent of ZR1 grown on methanol and methane. Flexible nitrogen and carotene metabolism pattern were also investigated in ZR1. Nitrogenase genes in ZR1 were found to be highly expressed with methane even in the presence of sufficient nitrate. It appears that, higher lycopene production in ZR1 grown on methane might be attributed to the higher proportion of transcript level of C40 to C30 metabolic gene. Higher transcript level of exopolysaccharides metabolic gene and stress responding proteins indicated that ZR1 was confronted with severer growth stress with methanol than with methane. Additionally, lower transcript level of the TCA cycle, the dramatic high expression level of the nitric oxide reductase and stress responding protein, revealed the imbalance of the central carbon and nitrogen metabolic status, which would result in the worse growth of ZR1 with methanol at 30 °C.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes e Vias Metabólicas , Methylomonas/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/métodos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Tamanho do Genoma , Genoma Bacteriano , Metano/metabolismo , Metanol/metabolismo , Methylomonas/classificação , Methylomonas/genética , Methylomonas/metabolismo , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de RNA , Temperatura
9.
Lett Appl Microbiol ; 71(3): 287-293, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32470995

RESUMO

Sediment samples were taken from sediment adjacent to a suburban river in Sheffield in Northern England that had suffered heavy metal pollution due to previous activity of the steel industry (between the 17th and 19th centuries). The most abundant heavy metals found in the samples were lead, chromium, nickel, arsenic and cobalt, with maximum concentrations of 412·80, 25·232, 25·196, 8·123 and 7·66 mg kg-1 , respectively. Enrichment cultures were set up using methane as carbon and energy source, as a result of which a strain of methanotroph was isolated that was shown via 16S rRNA gene sequencing to be a strain Methylomonas koyamae and given the designation SHU1. M. koyamae SHU1 removed hexavalent chromium from an initial concentration of 10 ppm, which was inhibited by the metabolic inhibitor sodium azide or the methane monooxygenase inhibitor phenylacetylene. To the authors' knowledge, this is the first description of a strain of the widely environmentally distributed genus Methylomonas that is capable of remediating hexavalent chromium. SIGNIFICANCE AND IMPACT OF THE STUDY: Aerobic methanotrophic bacteria are known for bioremediation of an increasing range of organic and inorganic pollutants, using methane as carbon and energy source. Previously, one laboratory methanotroph strain, Methylococcus capsulatus Bath, was known to bioremediate toxic chromium (VI) by reducing it to chromium (III). Here, a newly isolated methanotroph strain, Methylomonas koyamae SHU1, has been shown able to remediate chromium (VI). This indicates that chromium (VI) bioremediation is not unique to M. capsulatus and moreover adds weight to the suggestion that methanotrophs may contribute directly to chromium (VI) detoxification in nature and in polymicrobial bioremediation fed with methane.


Assuntos
Biodegradação Ambiental , Cromo/metabolismo , Metano/metabolismo , Methylomonas/metabolismo , Poluentes Químicos da Água/análise , Carbono/metabolismo , Inglaterra , Sedimentos Geológicos/microbiologia , Metais Pesados/análise , Methylomonas/classificação , Methylomonas/genética , Methylomonas/isolamento & purificação , Oxirredução , Oxigenases/metabolismo , RNA Ribossômico 16S/genética , Rios/química , Rios/microbiologia
10.
Environ Sci Pollut Res Int ; 26(25): 26286-26292, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286367

RESUMO

Chromate can be reduced by methanotrophs in a membrane biofilm reactor (MBfR). In this study, we cultivated a Cr(VI)-reducing biofilm in a methane (CH4)-based membrane biofilm batch reactor (MBBR) under anaerobic conditions. The Cr(VI) reduction rate increased to 0.28 mg/L day when the chromate concentration was ≤ 2.2 mg/L but declined sharply to 0.01 mg/L day when the Cr(VI) concentration increased to 6 mg/L. Isotope tracing experiments showed that part of the 13C-labeled CH4 was transformed to 13CO2, suggesting that the biofilm may reduce Cr(VI) by anaerobic methane oxidation (AnMO). Microbial community analysis showed that a methanogen, i.e., Methanobacterium, dominated in the biofilm, suggesting that this genus is probably capable of carrying out AnMO. The abundance of Methylomonas, an aerobic methanotroph, decreased significantly, while Meiothermus, a potential chromate-reducing bacterium, was enriched in the biofilm. Overall, the results showed that the anaerobic environment inhibited the activity of aerobic methanotrophs while promoting AnMO bacterial enrichment, and high Cr(VI) loading reduced Cr(VI) flux by inhibiting the methane oxidation process.


Assuntos
Reatores Biológicos/microbiologia , Cromatos/metabolismo , Metano/metabolismo , Eliminação de Resíduos Líquidos/instrumentação , Anaerobiose , Biofilmes , Dióxido de Carbono/metabolismo , Cromatos/química , Metano/química , Methanobacterium/genética , Methanobacterium/metabolismo , Methylomonas/genética , Methylomonas/metabolismo , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Oxirredução , Eliminação de Resíduos Líquidos/métodos
11.
Environ Pollut ; 250: 863-872, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31085472

RESUMO

Microaerobic and hypoxic methane oxidation coupled to denitrification (MAME-D and HYME-D) occur in stabilized landfills with leachate recirculation when biological denitrification is limited by lack of organics. To evaluate nitrate denitrification efficiency and culture MAME-D/HYME-D involved bacteria, a leach bed bioreactor semi-continuous experiment was conducted for 60 days in 5 runs, under nitrate concentrations ranging of 20 mg/L-55 mg/L, wherein 5% sterile leachate was added during runs 4 and 5. Although the HYME-D system demonstrated high denitrification efficiency (74.93%) and nitrate removal rate reached 2.62 mmol N/(L⋅d), the MAME-D system exhibited a denitrification efficiency of almost 100% and nitrate removal rate of 4.37 mmol N/(L⋅d). The addition of sterile leachate increased the nitrate removal rate in both systems, but caused the decrease of methane consumption in HYME-D. A stable isotope batch experiment was carried out to investigate the metabolic products by monitoring the 13CO2 and 15N2O production. The production of organic intermediates such as citrate, lactic acid, acetate, and propionic acid were also observed, which exhibited a higher yield in HYME-D. Variations in the microbial communities were analyzed during the semi-continuous experiment. MAME-D was mainly conducted by the association of type Ⅰ methanotroph Methylomonas and the methylotrophic denitrifier Methylotenera. Methane fermentation processed by Methylomonas under hypoxic conditions produced more complex organic intermediates and increased the diversity of related heterotrophic denitrifiers. The addition of sterile real leachate, resulting in increase of COD/N, influenced the microbial community of HYME-D system significantly.


Assuntos
Reatores Biológicos/microbiologia , Desnitrificação , Metano/análise , Methylocystaceae/metabolismo , Methylomonas/metabolismo , Nitratos/análise , Instalações de Eliminação de Resíduos , Aerobiose , Anaerobiose , Isótopos de Carbono/análise , Processos Heterotróficos , Sequenciamento de Nucleotídeos em Larga Escala , Metano/metabolismo , Microbiota , Nitratos/metabolismo , Isótopos de Nitrogênio/análise , Oxirredução
12.
Metab Eng ; 54: 170-179, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30986511

RESUMO

Methane-utilizing methanotrophs are fascinating systems for methane bioconversion. Methylomonas sp. DH-1, a novel type I methanotroph isolated from brewery sludge, has been evaluated as a promising candidate for an industrial bio-catalyst. Succinate has been considered one of the top building block chemicals for the agricultural, food, and pharmaceutical industries. In this study, Methylomonas sp. DH-1 was engineered to accumulate succinate as a desired product. The TCA cycle and enzymes diverting carbon flux to acetate or formate were modified or deleted to improve succinate productivity. By deleting succinate dehydrogenase (sdh) in the TCA cycle, succinate production increased dramatically ∼10 times compared to that of the wild type. In addition, the maximum succinate titer of ∼134 mg/L (DS-GL) was achieved by integrating glyoxylate shunt enzymes from the E. coli MG1655 strain. Pyruvate formate lyase (pfl) and acetate kinase-phosphotransacetylase (ack-pta) genes were disrupted to further concentrate carbon flux to the TCA cycle. However, these additional disruptions of competitive pathways did not affect cell growth or succinate production positively. The mutant strain DS-GL, which showed the best succinate production, was grown in a fed-batch bioreactor, and higher cell growth and succinate production (∼195 mg/L succinate with 0.0789 g-succinate/g-methane yield) were achieved. In this study, we demonstrated a novel platform for microbial conversion of methane to succinate using methanotroph.


Assuntos
Engenharia Metabólica , Metano/metabolismo , Methylomonas , Ácido Succínico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico/genética , Methylomonas/genética , Methylomonas/metabolismo
13.
J Ind Microbiol Biotechnol ; 46(5): 675-685, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30706246

RESUMO

Propane is the main component of liquefied petroleum gas and is derived from crude oil processing. Methanotrophic bacteria can convert various alkanes using methane monooxygenase enzyme to primary alcohols. These are further oxidized to various aldehydes by alcohol dehydrogenases or methanol dehydrogenases. In this study, 2-propanol was produced from propane using the whole cells of Methylosinus trichosporium OB3b, Methylomicrobium alcaliphilum 20Z, and Methylomonas sp. DH-1 as the biocatalysts. The biocatalytic process of converting propane to 2-propanol was optimized by the use of several inhibitors and additives, such as EDTA, sodium phosphate, and sodium formate to prevent oxidation of 2-propanol to acetone and to enhance conversion of propane to propanol. The maximum titer of 2-propanol was 0.424 g/L, 0.311 g/L, and 0.610 g/L for Methylomonas sp. DH-1, M. alcaliphilum 20Z, and M. trichosporium OB3b whole cells, respectively. These results showed that type I and type II methanotrophs could be used as the potent biocatalyst for conversion of propane to propanol.


Assuntos
2-Propanol/química , Methylomonas/metabolismo , Methylosinus trichosporium/metabolismo , Propano/química , Acetona , Oxirredutases do Álcool/química , Álcoois , Alcanos , Catálise , Formiatos/química , Microbiologia Industrial , Methylococcaceae , Oxirredução , Oxigenases/química , Especificidade da Espécie
14.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709826

RESUMO

Multiple species of bacteria oxidize methane in the environment after it is produced by anaerobic ecosystems. These organisms provide reduced carbon substrates for species that cannot oxidize methane themselves, thereby serving a key role in these niches while also sequestering this potent greenhouse gas before it enters the atmosphere. Deciphering the molecular details of how methane-oxidizing bacteria interact in the environment enables us to understand an important aspect that shapes the structures and functions of these communities. Here we show that many members of the Methylomonas genus possess a LuxR-type acyl-homoserine lactone (acyl-HSL) receptor/transcription factor that is highly homologous to MbaR from the quorum-sensing (QS) system of Methylobacter tundripaludum, another methane oxidizer that has been isolated from the same environment. We reconstitute this detection system in Escherichia coli and use mutant and transcriptomic analysis to show that the receptor/transcription factor from Methylomonas sp. strain LW13 is active and alters LW13 gene expression in response to the acyl-HSL produced by M. tundripaludum These findings provide a molecular mechanism for how two species of bacteria that may compete for resources in the environment can interact in a specific manner through a chemical signal.IMPORTANCE Methanotrophs are bacteria that sequester methane, a significant greenhouse gas, and thereby perform an important ecosystem function. Understanding the mechanisms by which these organisms interact in the environment may ultimately allow us to manipulate and to optimize this activity. Here we show that members of a genus of methane-oxidizing bacteria can be influenced by a chemical signal produced by a possibly competing species. This provides insight into how gene expression can be controlled in these bacterial communities via an exogenous chemical signal.


Assuntos
Metano/metabolismo , Methylococcaceae/metabolismo , Microbiota/fisiologia , Transdução de Sinais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Ecossistema , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Methylococcaceae/genética , Methylomonas/genética , Methylomonas/metabolismo , Microbiota/genética , Oxirredução , Percepção de Quorum/fisiologia , Proteínas Repressoras , Transdução de Sinais/genética , Transativadores , Fatores de Transcrição/genética , Transcriptoma
15.
BMC Genomics ; 20(1): 130, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755173

RESUMO

BACKGROUND: Methanotrophs play an important role in biotechnological applications, with their ability to utilize single carbon (C1) feedstock such as methane and methanol to produce a range of high-value compounds. A newly isolated obligate methanotroph strain, Methylomonas sp. DH-1, became a platform strain for biotechnological applications because it has proven capable of producing chemicals, fuels, and secondary metabolites from methane and methanol. In this study, transcriptome analysis with RNA-seq was used to investigate the transcriptional change of Methylomonas sp. DH-1 on methane and methanol. This was done to improve knowledge about C1 assimilation and secondary metabolite pathways in this promising, but under-characterized, methane-bioconversion strain. RESULTS: We integrated genomic and transcriptomic analysis of the newly isolated Methylomonas sp. DH-1 grown on methane and methanol. Detailed transcriptomic analysis indicated that (i) Methylomonas sp. DH-1 possesses the ribulose monophosphate (RuMP) cycle and the Embden-Meyerhof-Parnas (EMP) pathway, which can serve as main pathways for C1 assimilation, (ii) the existence and the expression of a complete serine cycle and a complete tricarboxylic acid (TCA) cycle might contribute to methane conversion and energy production, and (iii) the highly active endogenous plasmid pDH1 may code for essential metabolic processes. Comparative transcriptomic analysis on methane and methanol as a sole carbon source revealed different transcriptional responses of Methylomonas sp. DH-1, especially in C1 assimilation, secondary metabolite pathways, and oxidative stress. Especially, these results suggest a shift of central metabolism when substrate changed from methane to methanol in which formaldehyde oxidation pathway and serine cycle carried more flux to produce acetyl-coA and NADH. Meanwhile, downregulation of TCA cycle when grown on methanol may suggest a shift of its main function is to provide de novo biosynthesis, but not produce NADH. CONCLUSIONS: This study provides insights into the transcriptomic profile of Methylomonas sp. DH-1 grown on major carbon sources for C1 assimilation, providing in-depth knowledge on the metabolic pathways of this strain. These observations and analyses can contribute to future metabolic engineering with the newly isolated, yet under-characterized, Methylomonas sp. DH-1 to enhance its biochemical application in relevant industries.


Assuntos
Carbono/metabolismo , Metano/metabolismo , Metanol/metabolismo , Methylomonas/crescimento & desenvolvimento , Methylomonas/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Ciclo do Ácido Cítrico , Formaldeído/metabolismo , Perfilação da Expressão Gênica , Glicólise , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Methylomonas/genética , Methylomonas/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Pentoses/metabolismo , Serina/metabolismo , Solventes , Triterpenos/metabolismo
16.
Environ Sci Pollut Res Int ; 26(5): 4777-4790, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30565114

RESUMO

The denitrifying anaerobic methane oxidation (DAMO) process can achieve methane oxidation and denitrification at the same time by using nitrate or nitrite as an electron acceptor. The short- and long-term effects of nitrite on DAMO organisms were studied from macro (such as denitrification) to micro (such as microbial structure and community) based on two types of DAMO microbial systems. The results showed that the inhibitory effects of nitrite on the two DAMO microbial systems increased with rising concentration and prolonged time. In the short-term inhibitory phase, nitrite with concentrations below 100 mg N L-1 did not inhibit the two distinct DAMO enrichments. When nitrite concentration was increased to 950 mg N L-1, the nitrogen removal performance was completely inhibited. However, in the long-term inhibition experiment, when nitrite concentration was increased to 650 mg N L-1, the nitrogen removal performance was completely inhibited. In addition, in acidic conditions, the real inhibitor of nitrite is FNA (free nitrous acid), while in alkaline conditions, the real inhibitor is the ionized form of nitrite. By using high-throughput sequencing technology, the species abundance and diversity of the two DAMO microbial systems showed an apparent decrease after long-term inhibition, and the community structure also changed significantly. For the enrichment culture dominated by DAMO bacteria, the substantial drop of Methylomonas may be the internal cause of the decreased nitrogen removal rate, and for the coexistence system that hosted both DAMO bacteria and archaea, the reduction of Nitrospirae may be an internal reason for the decline of the denitrification rate.


Assuntos
Reatores Biológicos/microbiologia , Metano/metabolismo , Methylococcaceae/metabolismo , Nitritos/metabolismo , Anaerobiose/efeitos dos fármacos , Archaea/genética , Archaea/metabolismo , Desnitrificação , Sequenciamento de Nucleotídeos em Larga Escala , Methylococcaceae/efeitos dos fármacos , Methylococcaceae/genética , Methylomonas/metabolismo , Consórcios Microbianos/fisiologia , Nitratos/metabolismo , Nitratos/farmacologia , Nitritos/farmacologia , Nitrogênio/metabolismo , Oxirredução , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos
17.
mBio ; 9(2)2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588409

RESUMO

A recent surprising discovery of the activity of rare earth metals (lanthanides) as enzyme cofactors as well as transcriptional regulators has overturned the traditional assumption of biological inertia of these metals. However, so far, examples of such activities have been limited to alcohol dehydrogenases. Here we describe the physiological effects of a mutation in xoxG, a gene encoding a novel cytochrome, XoxG(4), and compare these to the effects of mutation in XoxF, a lanthanide-dependent methanol dehydrogenase, at the enzyme activity level and also at the community function level, using Methylomonas sp. strain LW13 as a model organism. Through comparative phenotypic characterization, we establish XoxG as the second protein directly involved in lanthanide-dependent metabolism, likely as a dedicated electron acceptor from XoxF. However, mutation in XoxG caused a phenotype that was dramatically different from the phenotype of the mutant in XoxF, suggesting a secondary function for this cytochrome, in metabolism of methane. We also purify XoxG(4) and demonstrate that this protein is a true cytochrome c, based on the typical absorption spectra, and we demonstrate that XoxG can be directly reduced by a purified XoxF, supporting one of its proposed physiological functions. Overall, our data continue to suggest the complex nature of the interplay between the calcium-dependent and lanthanide-dependent alcohol oxidation systems, while they also suggest that addressing the roles of these alternative systems is essential at the enzyme and community function level, in addition to the gene transcription level.IMPORTANCE The lanthanide-dependent biochemistry of living organisms remains a barely tapped area of knowledge. So far, only a handful of lanthanide-dependent alcohol dehydrogenases have been described, and their regulation by lanthanides has been demonstrated at the transcription level. Little information is available regarding the concentrations of lanthanides that could support sufficient enzymatic activities to support specific metabolisms, and so far, no other redox proteins involved in lanthanide-dependent methanotrophy have been demonstrated. The research presented here provides enzyme activity-level data on lanthanide-dependent methanotrophy in a model methanotroph. Additionally, we identify a second protein important for lanthanide-dependent metabolism in this organism, XoxG(4), a novel cytochrome. XoxG(4) appears to have multiple functions in methanotrophy, one function as an electron acceptor from XoxF and another function remaining unknown. On the basis of the dramatic phenotype of the XoxG(4) mutant, this function must be crucial for methanotrophy.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Metano/metabolismo , Methylomonas/metabolismo , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Methylomonas/genética , Oxirredução
18.
J Appl Microbiol ; 123(5): 1214-1227, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28888065

RESUMO

AIMS: Methane and methanol are potential carbon sources of industrial micro-organisms in addition to crop-derived bio-carbon sources. Methanotrophs that can utilize these simple, stable and large amounts chemicals are expected to be developed into 'cell factories' for the production of specific chemicals. In this study, a methanotroph that can synthesize lycopene, C30 carotenoid and exopolysaccharides (EPS) with relative better performances from C1 substrates was isolated, and its performances were evaluated. METHODS AND RESULTS: The isolated strain was identified as Methylomonas sp. ZR1 based on 16S rRNA sequence analysis. Its maximum specific growth rate achieved 0·200 h-1 under flask culture conditions, and 0·386 h-1 in bubble column reactors. ZR1 was able to utilize 35 g l-1 of methanol and even exhibited slight growth in the presence of 40 g l-1 of methanol. Furthermore, ZR1 was proved to synthesize lycopene (C40 carotenoids) besides the C30 carotenoids through HPLC-DAD and HPLC-MS/MS analysis methods. Its carotenoid extracts exhibited excellent antioxidative activities measured by the ABTS+ method. Plenty of polysaccharides were also synthesized by ZR1, the components of the polysaccharides were identified as glucose, mannose and galactose with a proportion of 1 : 2 : 1 by GC-MS, and its yield achieved 0·13 g g-1 cell dry weight. CONCLUSIONS: The isolated strain has great potential for the production of value-added bioproducts from C1 compounds because of its excellent C1 substrate utilizing abilities and its abilities to naturally synthesize lycopene, C30 carotenoids and EPS. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, we isolated a fast-growing methanotroph, its C1 carbon substrate utilizing ability is excellent in comparison with reported methanotrophs. Furthermore, besides polysaccharides and C30 carotenoids which were commonly synthesized by methanotrophs, our findings suggested that C40 lycopene could also be naturally synthesized from methane by methanotrophs.


Assuntos
Carotenoides/biossíntese , Metano/metabolismo , Methylomonas/metabolismo , Carotenoides/química , Licopeno , Metanol/metabolismo , Methylomonas/classificação , Methylomonas/genética , Methylomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem
19.
J Ind Microbiol Biotechnol ; 44(7): 1097-1105, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28321646

RESUMO

Propane is the major component of liquefied petroleum gas (LPG). Nowadays, the use of LPG is decreasing, and thus utilization of propane as a chemical feedstock is in need of development. An efficient biological conversion of propane to acetone using a methanotrophic whole cell as the biocatalyst was proposed and investigated. A bio-oxidation pathway of propane to acetone in Methylomonas sp. DH-1 was analyzed by gene expression profiling via RNA sequencing. Propane was oxidized to 2-propanol by particulate methane monooxygenase and subsequently to acetone by methanol dehydrogenases. Methylomonas sp. DH-1 was deficient in acetone-converting enzymes and thus accumulated acetone in the absence of any enzyme inhibition. The maximum accumulation, average productivity and specific productivity of acetone were 16.62 mM, 0.678 mM/h and 0.141 mmol/g cell/h, respectively, under the optimized conditions. Our study demonstrates a novel method for the bioconversion of propane to acetone using methanotrophs under mild reaction condition.


Assuntos
Acetona/metabolismo , Regulação Bacteriana da Expressão Gênica , Metano/metabolismo , Methylomonas/genética , Propano/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , Escherichia coli/genética , Perfilação da Expressão Gênica , Methylomonas/metabolismo , Oxirredução , Oxigenases/genética , Oxigenases/metabolismo , Análise de Sequência de RNA
20.
Folia Microbiol (Praha) ; 62(5): 381-391, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28275945

RESUMO

Aerobic methane-oxidizing bacteria (MOB) are an environmentally significant group of microorganisms due to their role in the global carbon cycle. Research conducted over the past few decades has increased the interest in discovering novel genera of methane-degrading bacteria, which efficiently utilize methane and decrease the global warming effect. Moreover, methanotrophs have more promising applications in environmental bioengineering, biotechnology, and pharmacy. The investigations were undertaken to recognize the variety of endophytic methanotrophic bacteria associated with Carex nigra, Vaccinium oxycoccus, and Eriophorum vaginatum originating from Moszne peatland (East Poland). Methanotrophic bacteria were isolated from plants by adding sterile fragments of different parts of plants (roots and stems) to agar mineral medium (nitrate mineral salts (NMS)) and incubated at different methane values (1-20% CH4). Single colonies were streaked on new NMS agar media and, after incubation, transferred to liquid NMS medium. Bacterial growth dynamics in the culture solution was studied by optical density-OD600 and methane consumption. Changes in the methane concentration during incubation were controlled by the gas chromatography technique. Characterization of methanotrophs was made by fluorescence in situ hybridization (FISH) with Mg705 and Mg84 for type I methanotrophs and Ma450 for type II methanotrophs. Identification of endophytes was performed after 16S ribosomal RNA (rRNA) and mmoX gene amplification. Our study confirmed the presence of both types of methanotrophic bacteria (types I and II) with the predominance of type I methanotrophs. Among cultivable methanotrophs, there were different strains of the genus Methylomonas and Methylosinus. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged from 0.463 ± 0.067 to 5.928 ± 0.169 µmol/L CH4/mL/day.


Assuntos
Cyperaceae/microbiologia , Endófitos/isolamento & purificação , Metano/metabolismo , Methylomonas/isolamento & purificação , Methylosinus/isolamento & purificação , Vaccinium/microbiologia , Técnicas Bacteriológicas , Cromatografia Gasosa , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Endófitos/classificação , Endófitos/crescimento & desenvolvimento , Endófitos/metabolismo , Hibridização in Situ Fluorescente , Methylomonas/classificação , Methylomonas/crescimento & desenvolvimento , Methylomonas/metabolismo , Methylosinus/classificação , Methylosinus/crescimento & desenvolvimento , Methylosinus/metabolismo , Polônia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...